Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Microorganisms ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2303211

ABSTRACT

Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10-4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.

2.
Pathogens ; 12(3)2023 Mar 11.
Article in English | MEDLINE | ID: covidwho-2279745

ABSTRACT

BACKGROUND: SARS-CoV-2 related immunopathology may be the driving cause underlying severe COVID-19. Through an immunophenotyping analysis on paired bronchoalveolar lavage fluid (BALF) and blood samples collected from mechanically ventilated patients with COVID-19-associated Acute Respiratory Distress Syndrome (CARDS), this study aimed to evaluate the cellular immune responses in survivors and non-survivors of COVID-19. METHODS: A total of 36 paired clinical samples of bronchoalveolar lavage fluid (BALF) mononuclear cells (BALF-MC) and peripheral blood mononuclear cells (PBMC) were collected from 18 SARS-CoV-2-infected subjects admitted to the intensive care unit (ICU) of the Policlinico Umberto I, Sapienza University Hospital in Rome (Italy) for severe interstitial pneumonia. The frequencies of monocytes (total, classical, intermediate and non-classical) and Natural Killer (NK) cell subsets (total, CD56bright and CD56dim), as well as CD4+ and CD8+ T cell subsets [naïve, central memory (TCM) and effector memory (TEM)], and those expressing CD38 and/or HLADR were evaluated by multiparametric flow cytometry. RESULTS: Survivors with CARDS exhibited higher frequencies of classical monocytes in blood compared to non-survivors (p < 0.05), while no differences in the frequencies of the other monocytes, NK cell and T cell subsets were recorded between these two groups of patients (p > 0.05). The only exception was for peripheral naïve CD4+ T cells levels that were reduced in non-survivors (p = 0.04). An increase in the levels of CD56bright (p = 0.012) and a decrease in CD56dim (p = 0.002) NK cell frequencies was also observed in BALF-MC samples compared to PBMC in deceased COVID-19 patients. Total CD4+ and CD8+ T cell levels in the lung compartment were lower compared to blood (p = 0.002 and p < 0.01, respectively) among non-survivors. Moreover, CD38 and HLA-DR were differentially expressed by CD4+ and CD8+ T cell subsets in BALF-MC and in PBMC among SARS-CoV-2-infected patients who died from COVID-19 (p < 0.05). CONCLUSIONS: These results show that the immune cellular profile in blood and pulmonary compartments was similar in survivors and non-survivors of COVID-19. T lymphocyte levels were reduced, but resulted highly immune-activated in the lung compartment of patients who faced a fatal outcome.

4.
J Med Virol ; 95(4): e28714, 2023 04.
Article in English | MEDLINE | ID: covidwho-2280052

ABSTRACT

The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 it caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 × 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly to be prepared and well documented on the real situation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Asia/epidemiology , Biological Evolution
6.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2143244

ABSTRACT

The BQ.1 SARS-CoV-2 variant, also known as Cerberus, is one of the most recent Omicron descendant lineages. Compared to its direct progenitor BA.5, BQ.1 has some additional spike mutations in some key antigenic sites, which confer further immune escape ability over other circulating lineages. In such a context, here, we perform a genome-based survey aimed at obtaining a complete-as-possible nuance of this rapidly evolving Omicron subvariant. Genetic data suggest that BQ.1 represents an evolutionary blind background, lacking the rapid diversification that is typical of a dangerous lineage. Indeed, the evolutionary rate of BQ.1 is very similar to that of BA.5 (7.6 × 10-4 and 7 × 10-4 subs/site/year, respectively), which has been circulating for several months. The Bayesian Skyline Plot reconstruction indicates a low level of genetic variability, suggesting that the peak was reached around 3 September 2022. Concerning the affinity for ACE2, structure analyses (also performed by comparing the properties of BQ.1 and BA.5 RBD) indicate that the impact of the BQ.1 mutations may be modest. Likewise, immunoinformatic analyses showed moderate differences between the BQ.1 and BA5 potential B-cell epitopes. In conclusion, genetic and structural analyses on SARS-CoV-2 BQ.1 suggest no evidence of a particularly dangerous or high expansion capability. Genome-based monitoring must continue uninterrupted for a better understanding of its descendants and all other lineages.


Subject(s)
COVID-19 , Humans , Bayes Theorem , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Biological Evolution
7.
Pathogens ; 11(9)2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2043889

ABSTRACT

The SARS-CoV-2 pandemic resulted in an unprecedented global crisis. SARS-CoV-2 primarily causes lung infection trough the binding of the virus with the ACE-2 cell receptor located on the surface of the alveolar epithelial cells. Notably, ACE-2 cell receptors are also expressed in the epithelial cells of the intestinal tract (GI). Recent data showed that the microbial communities of the GI might act as local and systematic inflammatory modulators. Gastrointestinal symptoms, including diarrhea, are frequently observed in infected individuals, and recent released data indicate that SARS-CoV-2 may also spread by fecal-oral transmission. Moreover, the gut microbiota's ecosystem can regulate and be regulated by invading pathogens, including viruses, facilitating an effective immune response, which in turn results in less severe diseases. In this regard, increased SARS-CoV-2 mortality and morbidities appear to be frequently observed in elderly immunocompromised patients and in people with essential health problems, such as diabetes, who, indeed, tend to have a less diverse gut microbiota (dysbiosis). Therefore, it is important to understand how the interaction between the gut microbiota and SARS-CoV-2 might shape the intensity of the infection and different clinical outcomes. Here, we provide insights into the current knowledge of dysbiosis during SARS-CoV-2 infection and methods that may be used to re-establish a more correct microbiota composition.

8.
Pathogens ; 11(7)2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1938935

ABSTRACT

An analysis of the structural effect of the mutations of the B.1.640.2 (IHU) Spike Receptor Binding Domain (RBD) and N-terminal Domain (NTD) is reported along with a comparison with the sister lineage B.1.640.1. and a selection of variants of concern. The effect of the mutations on the RBD-ACE2 interaction was also assessed. The structural analysis applied computational methods that are able to carry out in silico mutagenesis to calculate energy minimization and the folding energy variation consequent to residue mutations. Tools for electrostatic calculation were applied to quantify and display the protein surface electrostatic potential. Interactions at the RBD-ACE2 interface were scrutinized using computational tools that identify the interactions and predict the contribution of each interface residue to the stability of the complex. The comparison among the RBDs shows that the most evident differences between the variants is in the distribution of the surface electrostatic potential: that of B.1.640.1 is as that of the Alpha RBD, while B.1.640.2 appears to have an intermediate surface potential pattern with characteristics between those of the Alpha and Delta variants. Moreover, the B.1.640.2 Spike includes the mutation E484K that in other variants has been suggested to be involved in immune evasion. These properties may hint at the possibility that B.1.640.2 emerged with a potentially increased infectivity with respect to the sister B.1.640.1 variant, but significantly lower than that of the Delta and Omicron variants. However, the analysis of their NTD domains highlights deletions, destabilizing mutations and charge alterations that can limit the ability of the B.1.640.1 and B.1.640.2 variants to interact with cellular components, such as cell surface receptors.

9.
Pathogens ; 11(5)2022 May 11.
Article in English | MEDLINE | ID: covidwho-1869728

ABSTRACT

Onco-hematologic patients are highly susceptible to SARS-CoV-2 infection and, once infected, frequently develop COVID-19 due to the immunosuppression caused by tumor growth, chemotherapy and immunosuppressive therapy. In addition, COVID-19 has also been recognized as a further cause of HBV reactivation, since its treatment includes the administration of corticosteroids and some immunosuppressive drugs. Consequently, onco-hematologic patients should undergo SARS-CoV-2 vaccination and comply with the rules imposed by lockdowns or other forms of social distancing. Furthermore, onco-hematologic facilities should be adapted to new needs and provided with numerically adequate health personnel vaccinated against SARS-CoV-2 infection. Onco-hematologic patients, both HBsAg-positive and HBsAg-negative/HBcAb-positive, may develop HBV reactivation, made possible by the support of the covalently closed circular DNA (cccDNA) persisting in the hepatocytic nuclei of patients with an ongoing or past HBV infection. This occurrence must be prevented by administering high genetic barrier HBV nucleo(t)side analogues before and throughout the antineoplastic treatment, and then during a long-term post-treatment follow up. The prevention of HBV reactivation during the SARS-CoV-2 pandemic is the topic of this narrative review.

10.
J Med Virol ; 94(4): 1257-1260, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1568203

ABSTRACT

The ongoing discussion about the real origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) feeds acrimonious debates. Where did SARS-CoV-2 come from? Was SARS-CoV-2 transmitted in the wild from an animal to a person before exploding in Wuhan or was it an engineered virus that escaped from research or a laboratory in Wuhan? Right now, we still don't know enough whether SARS-CoV-2 is human-made or not, and lab-leak theories remain essentially speculative. Many recent studies have pointed out several plausible scenarios. Anyhow, currently, even if suspicions by some about the possibility of lab-leak hypothesis still remain, the consensus view is that the pandemic probably started from a natural source and, to determine the real origin of the SARS-CoV-2 virus, further research is needed.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Biological Evolution , COVID-19/epidemiology , COVID-19/transmission , Humans , Laboratories , SARS-CoV-2/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
11.
Commun Biol ; 4(1): 489, 2021 04 21.
Article in English | MEDLINE | ID: covidwho-1387493

ABSTRACT

We investigated SARS-CoV-2 transmission dynamics in Italy, one of the countries hit hardest by the pandemic, using phylodynamic analysis of viral genetic and epidemiological data. We observed the co-circulation of multiple SARS-CoV-2 lineages over time, which were linked to multiple importations and characterized by large transmission clusters concomitant with a high number of infections. Subsequent implementation of a three-phase nationwide lockdown strategy greatly reduced infection numbers and hospitalizations. Yet we present evidence of sustained viral spread among sporadic clusters acting as "hidden reservoirs" during summer 2020. Mathematical modelling shows that increased mobility among residents eventually catalyzed the coalescence of such clusters, thus driving up the number of infections and initiating a new epidemic wave. Our results suggest that the efficacy of public health interventions is, ultimately, limited by the size and structure of epidemic reservoirs, which may warrant prioritization during vaccine deployment.


Subject(s)
COVID-19/transmission , Communicable Disease Control/methods , Genome, Viral/genetics , Mutation , Public Health/methods , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , Geography , Humans , Italy/epidemiology , Pandemics , Phylogeny , Public Health/trends , SARS-CoV-2/classification , SARS-CoV-2/physiology
12.
Expert Rev Mol Diagn ; 21(6): 547-562, 2021 06.
Article in English | MEDLINE | ID: covidwho-1182936

ABSTRACT

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has pushed the scientific community to undertake intense research efforts. Understanding SARS-CoV-2 biology is necessary to discover therapeutic or preventive strategies capable of containing the pandemic. Knowledge of the structural characteristics of the virus genome and proteins is essential to find targets for therapies and immunological interventions.Areas covered: This review covers different areas of expertise, genomic analysis of circulating strains, structural biology, viral mutations, molecular diagnostics, disease, and vaccines. In particular, the review is focused on the molecular approaches and modern clinical strategies used in these fields.Expert opinion: Molecular approaches to SARS-CoV-2 pandemic have been critical to shorten time for new diagnostic, therapeutic and prevention strategies. In this perspective, the entire scientific community is moving in the same direction. Vaccines, together with the development of new drugs to treat the disease, represent the most important strategy to protect human from viral disease and prevent further spread. In this regard, new molecular technologies have been successfully implemented. The use of a novel strategy of communication is suggested for a better diffusion to the broader public of new data and results.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Vaccines/pharmacology , COVID-19/epidemiology , SARS-CoV-2/genetics , Animals , COVID-19/etiology , Genome, Viral , Humans , Mutation , Phylogeny , SARS-CoV-2/isolation & purification , Viral Proteins/chemistry , Viral Proteins/genetics
13.
Chemotherapy ; 66(1-2): 8-16, 2021.
Article in English | MEDLINE | ID: covidwho-1153760

ABSTRACT

Viruses arise through cross-species transmission and can cause potentially fatal diseases in humans. This is the case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which recently appeared in Wuhan, China, and rapidly spread worldwide, causing the outbreak of coronavirus disease 2019 (COVID-19) and posing a global health emergency. Sequence analysis and epidemiological investigations suggest that the most likely original source of SARS-CoV-2 is a spillover from an animal reservoir, probably bats, that infected humans either directly or through intermediate animal hosts. The role of animals as reservoirs and natural hosts in SARS-CoV-2 has to be explored, and animal models for COVID-19 are needed as well to be evaluated for countermeasures against SARS-CoV-2 infection. Experimental cells, tissues, and animal models that are currently being used and developed in COVID-19 research will be presented.


Subject(s)
COVID-19 , Communicable Disease Control/methods , Disease Reservoirs/virology , Disease Vectors , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Disease Transmission, Infectious/prevention & control , Humans , Models, Theoretical , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
14.
Chemotherapy ; 66(1-2): 3-7, 2021.
Article in English | MEDLINE | ID: covidwho-1140386

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in early December 2019 has rapidly widespread worldwide, becoming one of the major global public health issues of the last centuries. Key Messages: Over the course of the pandemic, due to the advanced whole-genome sequencing technologies, an unprecedented amount of genomes have been generated, providing invaluable insights into the ongoing evolution and epidemiology of the virus during the pandemic. Therefore, this large amount of data played an important role in the SARS-CoV-2 mitigation and control strategies. Key Messages: The active monitoring and characterization of the SARS-CoV-2 lineages circulating worldwide is useful for a more specific diagnosis, better care, and timely treatment. In this review, a concise characterization of all the lineages and sub-lineages circulating and co-circulating across the world has been presented in order to determine the magnitude of the SARS-CoV-2 threat and to better understand the virus genetic diversity and its dispersion dynamics.


Subject(s)
COVID-19 , Communicable Disease Control/methods , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , Epidemiological Monitoring , Genome, Viral , Global Health , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
15.
Int J Biol Macromol ; 170: 820-826, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-996949

ABSTRACT

In this study, analysis of changes of SARS-CoV-2 ORF3a protein during pandemic is reported. ORF3a, a conserved coronavirus protein, is involved in virus replication and release. A set of 70,752 high-quality SARS-CoV-2 genomes available in GISAID databank at the end of August 2020 have been scanned. All ORF3a mutations in the virus genomes were grouped according to the collection date interval and over the entire data set. The considered intervals were: start of collection-February, March, April, May, June, July and August 2020. The top five most frequent variants were examined within each collection interval. Overall, seventeen variants have been isolated. Ten of the seventeen mutant sites occur within the transmembrane (TM) domain of ORF3a and are in contact with the central pore or side tunnels. The other variant sites are in different places of the ORF3a structure. Within the entire sample, the five most frequent mutations are V13L, Q57H, Q57H + A99V, G196V and G252V. The same analysis identified 28 sites identically conserved in all the genome isolates. These sites are possibly involved in stabilization of monomer, dimer, tetramerization and interaction with other cellular components. The results here reported can be helpful to understand virus biology and to design new therapeutic strategies.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Viroporin Proteins/genetics , Amino Acid Sequence , COVID-19/epidemiology , Conserved Sequence , Databases, Genetic , Evolution, Molecular , Genome, Viral , Humans , Models, Molecular , Pandemics , Protein Structure, Quaternary , Proteome/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Time Factors , Viroporin Proteins/chemistry , Viroporin Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL